Close Menu
TechurzTechurz

    Subscribe to Updates

    Get the latest creative news from FooBar about art, design and business.

    What's Hot

    New .NET CAPI Backdoor Targets Russian Auto and E-Commerce Firms via Phishing ZIPs

    October 18, 2025

    CISOs face quantum leap in prioritizing quantum resilience

    October 18, 2025

    5 apps I always install on every new Windows PC – and why they’re essential

    October 18, 2025
    Facebook X (Twitter) Instagram
    Trending
    • New .NET CAPI Backdoor Targets Russian Auto and E-Commerce Firms via Phishing ZIPs
    • CISOs face quantum leap in prioritizing quantum resilience
    • 5 apps I always install on every new Windows PC – and why they’re essential
    • Silver Fox Expands Winos 4.0 Attacks to Japan and Malaysia via HoldingHands RAT
    • Hackerangriff auf Stadtverwaltung Hohen Neuendorf
    • Dashlane debuts passwordless access to its password manager – but beware this major hitch
    • Beware the Hidden Costs of Pen Testing
    • Government considered destroying its data hub after decade-long intrusion
    Facebook X (Twitter) Instagram Pinterest Vimeo
    TechurzTechurz
    • Home
    • AI
    • Apps
    • News
    • Guides
    • Opinion
    • Reviews
    • Security
    • Startups
    TechurzTechurz
    Home»AI»From dot-com to dot-AI: How we can learn from the last tech transformation (and avoid making the same mistakes)
    AI

    From dot-com to dot-AI: How we can learn from the last tech transformation (and avoid making the same mistakes)

    TechurzBy TechurzMay 18, 2025No Comments6 Mins Read
    Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
    From dot-com to dot-AI: How we can learn from the last tech transformation (and avoid making the same mistakes)
    Share
    Facebook Twitter LinkedIn Pinterest Email

    Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More

    At the height of the dot-com boom, adding “.com” to a company’s name was enough to send its stock price soaring — even if the business had no real customers, revenue or path to profitability. Today, history is repeating itself. Swap “.com” for “AI,” and the story sounds eerily familiar.

    Companies are racing to sprinkle “AI” into their pitch decks, product descriptions and domain names, hoping to ride the hype. As reported by Domain Name Stat, registrations for “.ai” domains surged about 77.1% year-over-year in 2024, driven by startups and incumbents alike rushing to associate themselves with artificial intelligence — whether they have a true AI advantage or not.

    The late 1990s made one thing clear: Using breakthrough technology isn’t enough. The companies that survived the dot-com crash weren’t chasing hype — they were solving real problems and scaling with purpose.

    AI is no different. It will reshape industries, but the winners won’t be those slapping “AI” on a landing page — they’ll be the ones cutting through the hype and focusing on what matters.

    The first steps? Start small, find your wedge and scale deliberately.

    Start small: Find your wedge before you scale

    One of the most costly mistakes of the dot-com era was trying to go big too soon — a lesson AI product builders today can’t afford to ignore.

    Take eBay, for example. It began as a simple online auction site for collectibles — starting with something as niche as Pez dispensers. Early users loved it because it solved a very specific problem: It connected hobbyists who couldn’t find each other offline. Only after dominating that initial vertical did eBay expand into broader categories like electronics, fashion and, eventually, almost anything you can buy today.

    Compare that to Webvan, another dot-com era startup with a much different strategy. Webvan aimed to revolutionize grocery shopping with online ordering and rapid home delivery — all at once, in multiple cities. It spent hundreds of millions of dollars building massive warehouses and complex delivery fleets before it had strong customer demand. When growth didn’t materialize fast enough, the company collapsed under its own weight.

    The pattern is clear: Start with a sharp, specific user need. Focus on a narrow wedge you can dominate. Expand only when you have proof of strong demand.

    For AI product builders, this means resisting the urge to build an “AI that does everything.” Take, for example, a generative AI tool for data analysis. Are you targeting product managers, designers or data scientists? Are you building for people who don’t know SQL, those with limited experience or seasoned analysts?

    Each of those users has very different needs, workflows and expectations. Starting with a narrow, well-defined cohort — like technical project managers (PMs) with limited SQL experience who need quick insights to guide product decisions — allows you to deeply understand your user, fine-tune the experience and build something truly indispensable. From there, you can expand intentionally to adjacent personas or capabilities. In the race to build lasting gen AI products, the winners won’t be the ones who try to serve everyone at once — they’ll be the ones who start small, and serve someone incredibly well.

    Own your data moat: Build compounding defensibility early

    Starting small helps you find product-market fit. But once you gain traction, your next priority is to build defensibility — and in the world of gen AI, that means owning your data.

    The companies that survived the dot-com boom didn’t just capture users — they captured proprietary data. Amazon, for example, didn’t stop at selling books. They tracked purchases and product views to improve recommendations, then used regional ordering data to optimize fulfillment. By analyzing buying patterns across cities and zip codes, they predicted demand, stocked warehouses smarter and streamlined shipping routes — laying the foundation for Prime’s two-day delivery, a key advantage competitors couldn’t match. None of it would have been possible without a data strategy baked into the product from day one.

    Google followed a similar path. Every query, click and correction became training data to improve search results — and later, ads. They didn’t just build a search engine; they built a real-time feedback loop that constantly learned from users, creating a moat that made their results and targeting harder to beat.

    The lesson for gen AI product builders is clear: Long-term advantage won’t come from simply having access to a powerful model — it will come from building proprietary data loops that improve their product over time.

    Today, anyone with enough resources can fine-tune an open-source large language model (LLM) or pay to access an API. What’s much harder — and far more valuable — is gathering high-signal, real-world user interaction data that compounds over time.

    If you’re building a gen AI product, you need to ask critical questions early:

    • What unique data will we capture as users interact with us?
    • How can we design feedback loops that continuously refine the product?
    • Is there domain-specific data we can collect (ethically and securely) that competitors won’t have?

    Take Duolingo, for example. With GPT-4, they’ve gone beyond basic personalization. Features like “Explain My Answer” and AI role-play create richer user interactions — capturing not just answers, but how learners think and converse. Duolingo combines this data with their own AI to refine the experience, creating an advantage competitors can’t easily match.

    In the gen AI era, data should be your compounding advantage. Companies that design their products to capture and learn from proprietary data will be the ones that survive and lead.

    Conclusion: It’s a marathon, not a sprint

    The dot-com era showed us that hype fades fast, but fundamentals endure. The gen AI boom is no different. The companies that thrive won’t be the ones chasing headlines — they’ll be the ones solving real problems, scaling with discipline and building real moats.

    The future of AI will belong to builders who understand that it’s a marathon — and have the grit to run it.

    Kailiang Fu is an AI product manager at Uber.

    Daily insights on business use cases with VB Daily

    If you want to impress your boss, VB Daily has you covered. We give you the inside scoop on what companies are doing with generative AI, from regulatory shifts to practical deployments, so you can share insights for maximum ROI.

    Read our Privacy Policy

    Thanks for subscribing. Check out more VB newsletters here.

    An error occured.

    avoid dotAI dotcom learn making Mistakes tech transformation
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleSerie A Italian Soccer Livestream: How to Watch Inter Milan vs. Lazio From Anywhere
    Next Article Acer Vero B247Y business monitor review
    Techurz
    • Website

    Related Posts

    Opinion

    The Young Minds App wants to protect and educate children online and will show its tech at TechCrunch Disrupt 2025

    October 5, 2025
    Security

    Despite AI-related job loss fears, tech hiring holds steady – and here are the most in-demand skills

    October 4, 2025
    Opinion

    New deep tech fund Wave Function Ventures raises $15 million

    October 3, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    The Reason Murderbot’s Tone Feels Off

    May 14, 20259 Views

    A Former Apple Luminary Sets Out to Create the Ultimate GPU Software

    September 25, 20258 Views

    Start Saving Now: An iPhone 17 Pro Price Hike Is Likely, Says New Report

    August 17, 20258 Views
    Stay In Touch
    • Facebook
    • YouTube
    • TikTok
    • WhatsApp
    • Twitter
    • Instagram
    Latest Reviews

    Subscribe to Updates

    Get the latest tech news from FooBar about tech, design and biz.

    Most Popular

    The Reason Murderbot’s Tone Feels Off

    May 14, 20259 Views

    A Former Apple Luminary Sets Out to Create the Ultimate GPU Software

    September 25, 20258 Views

    Start Saving Now: An iPhone 17 Pro Price Hike Is Likely, Says New Report

    August 17, 20258 Views
    Our Picks

    New .NET CAPI Backdoor Targets Russian Auto and E-Commerce Firms via Phishing ZIPs

    October 18, 2025

    CISOs face quantum leap in prioritizing quantum resilience

    October 18, 2025

    5 apps I always install on every new Windows PC – and why they’re essential

    October 18, 2025

    Subscribe to Updates

    Get the latest creative news from FooBar about art, design and business.

    Facebook X (Twitter) Instagram Pinterest
    • About Us
    • Contact Us
    • Privacy Policy
    • Terms and Conditions
    • Disclaimer
    © 2025 techurz. Designed by Pro.

    Type above and press Enter to search. Press Esc to cancel.