Close Menu
TechurzTechurz

    Subscribe to Updates

    Get the latest creative news from FooBar about art, design and business.

    What's Hot

    Creating a qubit fit for a quantum future

    August 28, 2025

    Anthropic will start training its AI models on chat transcripts

    August 28, 2025

    CrowdStrike buys Onum in agentic SOC push

    August 28, 2025
    Facebook X (Twitter) Instagram
    Trending
    • Creating a qubit fit for a quantum future
    • Anthropic will start training its AI models on chat transcripts
    • CrowdStrike buys Onum in agentic SOC push
    • I asked Google Finance’s AI chatbot what stocks to buy – and its answer surprised me
    • Intel has received $5.7 billion under Trump’s investment deal
    • This Qi2 battery pack from Anker just made wireless charging essential for me
    • Bob Odenkirk’s ‘Nobody 2’ Gets Streaming Date, Report Says
    • Unravelling 5G Complexity: Engaging Students with TIMS-Powered Hands-on Education
    Facebook X (Twitter) Instagram Pinterest Vimeo
    TechurzTechurz
    • Home
    • AI
    • Apps
    • News
    • Guides
    • Opinion
    • Reviews
    • Security
    • Startups
    TechurzTechurz
    Home»AI»Large Language Model Performance Raises Stakes
    AI

    Large Language Model Performance Raises Stakes

    TechurzBy TechurzJuly 3, 2025No Comments3 Mins Read
    Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
    Large Language Model Performance Raises Stakes
    Share
    Facebook Twitter LinkedIn Pinterest Email


    Benchmarking large language models presents some unusual challenges. For one, the main purpose of many LLMs is to provide compelling text that’s indistinguishable from human writing. And success in that task may not correlate with metrics traditionally used to judge processor performance, such as instruction execution rate.

    RELATED: LLM Benchmarking Shows Capabilities Doubling Every 7 Months

    But there are solid reasons to persevere in attempting to gauge the performance of LLMs. Otherwise, it’s impossible to know quantitatively how much better LLMs are becoming over time—and to estimate when they might be capable of completing substantial and useful projects by themselves.

      Large Language Models are more challenged by tasks that have a high “messiness” score.Model Evaluation & Threat Research

    That was a key motivation behind work at Model Evaluation & Threat Research (METR). The organization, based in Berkeley, Calif., “researches, develops, and runs evaluations of frontier AI systems’ ability to complete complex tasks without human input.” In March, the group released a paper called Measuring AI Ability to Complete Long Tasks, which reached a startling conclusion: According to a metric it devised, the capabilities of key LLMs are doubling every seven months. This realization leads to a second conclusion, equally stunning: By 2030, the most advanced LLMs should be able to complete, with 50 percent reliability, a software-based task that takes humans a full month of 40-hour workweeks. And the LLMs would likely be able to do many of these tasks much more quickly than humans, taking only days, or even just hours.

    An LLM Might Write a Decent Novel by 2030

    Such tasks might include starting up a company, writing a novel, or greatly improving an existing LLM. The availability of LLMs with that kind of capability “would come with enormous stakes, both in terms of potential benefits and potential risks,” AI researcher Zach Stein-Perlman wrote in a blog post.

    At the heart of the METR work is a metric the researchers devised called “task-completion time horizon.” It’s the amount of time human programmers would take, on average, to do a task that an LLM can complete with some specified degree of reliability, such as 50 percent. A plot of this metric for some general-purpose LLMs going back several years [main illustration at top] shows clear exponential growth, with a doubling period of about seven months. The researchers also considered the “messiness” factor of the tasks, with “messy” tasks being those that more resembled ones in the “real world,” according to METR researcher Megan Kinniment. Messier tasks were more challenging for LLMs [smaller chart, above].

    If the idea of LLMs improving themselves strikes you as having a certain singularity-robocalypse quality to it, Kinniment wouldn’t disagree with you. But she does add a caveat: “You could get acceleration that is quite intense and does make things meaningfully more difficult to control without it necessarily resulting in this massively explosive growth,” she says. It’s quite possible, she adds, that various factors could slow things down in practice. “Even if it were the case that we had very, very clever AIs, this pace of progress could still end up bottlenecked on things like hardware and robotics.”

    From Your Site Articles

    Related Articles Around the Web

    Language large model performance raises stakes
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleThese trackers go where AirTags can’t, and a 3-pack just went on sale
    Next Article Hydrow Discount Code: Save Up to $150 in July
    Techurz
    • Website

    Related Posts

    AI

    Creating a qubit fit for a quantum future

    August 28, 2025
    AI

    Anthropic will start training its AI models on chat transcripts

    August 28, 2025
    AI

    I asked Google Finance’s AI chatbot what stocks to buy – and its answer surprised me

    August 28, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    Start Saving Now: An iPhone 17 Pro Price Hike Is Likely, Says New Report

    August 17, 20258 Views

    You Can Now Get Starlink for $15-Per-Month in New York, but There’s a Catch

    July 11, 20257 Views

    Non-US businesses want to cut back on using US cloud systems

    June 2, 20257 Views
    Stay In Touch
    • Facebook
    • YouTube
    • TikTok
    • WhatsApp
    • Twitter
    • Instagram
    Latest Reviews

    Subscribe to Updates

    Get the latest tech news from FooBar about tech, design and biz.

    Most Popular

    Start Saving Now: An iPhone 17 Pro Price Hike Is Likely, Says New Report

    August 17, 20258 Views

    You Can Now Get Starlink for $15-Per-Month in New York, but There’s a Catch

    July 11, 20257 Views

    Non-US businesses want to cut back on using US cloud systems

    June 2, 20257 Views
    Our Picks

    Creating a qubit fit for a quantum future

    August 28, 2025

    Anthropic will start training its AI models on chat transcripts

    August 28, 2025

    CrowdStrike buys Onum in agentic SOC push

    August 28, 2025

    Subscribe to Updates

    Get the latest creative news from FooBar about art, design and business.

    Facebook X (Twitter) Instagram Pinterest
    • About Us
    • Contact Us
    • Privacy Policy
    • Terms and Conditions
    • Disclaimer
    © 2025 techurz. Designed by Pro.

    Type above and press Enter to search. Press Esc to cancel.